
© 2025 MR. SADIQ COVER

SYSTEM ANALYSIS AND
DESIGN

CSC 307

DEPARTMENT OF COMPUTER SCIENCE

FEDERAL COLLEGE OF EDUCATION, ZARIA

© 2025 Mr. Sadiq 1

Table of Contents

1.0 Introduction... 4

1.1 Information System .. 4

1.2 System Analysis and Design? .. 6

1.3 The Importance of Conducting System Analysis and Design 6

2.0 System Analyst ... 7

2.1 Role of a System Analyst .. 8

2.2 Tasks of a System Analyst .. 9

2.3 Attributes of a System Analyst .. 9

2.4 Skills of a System Analyst ... 10

3.0 The System Development Life Cycle ... 11

3.1 Planning Phase .. 12

3.2 Analysis Phase ... 13

3.3 Design Phase ... 15

3.4 Development Phase .. 16

3.5 Testing Phase .. 17

3.6 Implementation Phase ... 19

3.7 Maintenance Phase ... 20

4.0 Methodologies of System Development .. 21

4.1 Waterfall Model .. 21

4.1.1 Phases of the Waterfall Model .. 22

4.2 Iterative Model .. 24

© 2025 Mr. Sadiq 2

4.3 Incremental Model ... 26

Key Features of the Incremental Model ... 26

4.4 Prototyping Model ... 27

Key Features of the Prototyping Model ... 28

4.5 Agile Model .. 29

4.5.1 Popular Agile Methodologies .. 30

4.6 Rapid Application Development (RAD) Model .. 33

4.6.1 Phases of the RAD Model .. 33

4.7 V-Model ... 37

4.7.1 Structure of the V-Model ... 37

4.7.2 Verification Phases .. 38

4.7.3 Coding Phase .. 39

4.7.4 Validation Phases ... 39

4.8 Spiral Model ... 40

4.8.1 Phases of the Spiral Model ... 41

4.8.2 Iterative Development in the Spiral Model .. 42

4.9 Big Bang Model ... 44

4.9.1 Structure and Practical Use of the Big Bang Model 44

5.0 Requirement Determination .. 46

5.1 Types of Requirements .. 47

5.1.1 Functional Requirements ... 47

© 2025 Mr. Sadiq 3

5.1.2 Non-Functional Requirements .. 47

5.2 Importance of Requirement Determination .. 48

5.3 Techniques for Gathering Requirements .. 49

5.3.1 Interviews .. 49

5.3.2 Questionnaires .. 50

5.3.3 Observation ... 51

5.3.4 Document Analysis .. 52

5.3.5 Joint Application Development (JAD) ... 53

Steps in a JAD Session .. 53

© 2025 Mr. Sadiq 4

1.0 Introduction

A system is a collection of interconnected parts or components that work together

to achieve a common goal. It can be physical or conceptual and can be found in

various fields, including engineering, biology, ecology, economics, and social

sciences. In a physical sense, a system might be a machine made up of

interconnected mechanical components that work together to perform a specific

task, such as an engine or a computer. In an abstract or conceptual sense, a system

might be a set of rules or procedures that govern how people interact within a given

context, such as a legal system or an economic system.

A system can be defined as a set of elements or components that are interdependent

and function as a whole. These elements could be physical objects, people,

processes, or even ideas that interact with one another in a specific way. For

example, an ecosystem is a natural system comprising various living and non-living

components, such as plants, animals, water, air, soil, and sunlight, that interact with

each other to maintain a balance of life. A computer system, on the other hand, is

made up of hardware components, such as the central processing unit (CPU),

memory, and input/output devices, as well as software components, such as the

operating system and applications. These components are interconnected and work

together to perform specific functions, such as processing data or running software

programs.

1.1 Information System

An information system is a set of interconnected components that work together

to collect, store, process, and distribute information to support decision-making,

© 2025 Mr. Sadiq 5

coordination, control, analysis, and visualization of activities within an

organization or across organizations.

An information system can be composed of hardware, software, data, people, and

processes that interact with each other to create, manage, and use information. The

systems are designed to process, store, retrieve, and disseminate information for a

variety of purposes. Here are some examples of information systems:

a. Management Information Systems (MIS): These systems are used to provide

information to managers for decision-making purposes. They collect and

analyze data from various sources to produce reports that provide insights

into business performance.

b. Transaction Processing Systems (TPS): These systems are used to process

business transactions, such as sales, purchases, and inventory updates. They

are designed to be fast and accurate, and can handle large volumes of data.

c. Customer Relationship Management (CRM) systems: These systems are

used to manage interactions with customers, including sales, marketing, and

customer service. They provide insights into customer behavior and

preferences, and help organizations develop targeted marketing campaigns.

d. Geographic Information Systems (GIS): These systems are used to capture,

store, manipulate, analyze, and display geospatial data. They are used in a

variety of fields, including urban planning, natural resource management,

and environmental science.

e. Decision Support Systems (DSS): These systems are used to help people

make decisions by analyzing data and providing insights. They are often

© 2025 Mr. Sadiq 6

used in business and government settings to help managers make strategic

decisions.

These are just a few examples of information systems. There are many other types

of information systems that are used in a variety of industries and settings.

1.2 System Analysis and Design?

System Analysis and Design (SAD) is defined as a structured approach used to

develop or improve an information system. It involves a detailed study of the

current system, identifying the user requirements, analyzing the system, and

designing the new system. The goal of SAD is to develop an efficient and effective

system that meets the user's requirements and solves the business problem.

1.3 The Importance of Conducting System Analysis and Design

System analysis and design are crucial in the software development process as they

ensure that the software being developed meets the needs of the end-users and the

organization that will be using it. The following are some of the key reasons why

system analysis and design are essential in developing software:

i. Identify and define requirements: System analysis and design help to identify

and define the requirements of the software. This process ensures that the

software being developed will meet the specific needs of the users and the

organization.

ii. Ensure cost-effectiveness: Proper analysis and design of a system can identify

areas where costs can be reduced, while still achieving the desired outcome.

This process can help organizations save money by eliminating unnecessary

features or components.

© 2025 Mr. Sadiq 7

iii. Optimize performance: System analysis and design ensure that the software is

designed to perform optimally, with a focus on speed, accuracy, and

reliability. This process helps to minimize downtime, reduce errors, and

improve overall productivity.

iv. Enhance usability: Analysis and design also ensure that the software is

designed to be user-friendly, with an interface that is intuitive and easy to

use. This process helps to ensure that users can operate the software without

requiring extensive training.

v. Improve scalability: Analysis and design ensure that the software can be scaled

up or down easily as the needs of the organization change. This flexibility is

essential for organizations that experience rapid growth or need to downsize.

vi. Minimize risk: Analysis and design help to identify potential risks and issues

with the software before it is developed. This process helps to ensure that

any problems are addressed before they become costly or time-consuming to

fix.

In summary, system analysis and design are critical in the software development

process as they ensure that the software being developed meets the specific needs

of the users and the organization, is cost-effective, performs optimally, is user-

friendly, is scalable, and minimizes risk.

2.0 System Analyst

A system analyst is a professional who analyzes, designs, and implements

information systems to help organizations achieve their goals. They typically work

with stakeholders to understand their requirements and then translate those

requirements into technical specifications for developers to implement.

© 2025 Mr. Sadiq 8

2.1 Role of a System Analyst

System Analysts play a vital role in bridging the gap between business needs and

technical solutions. Some of their core duties include:

i. Requirement Gathering: They interact with stakeholders to gather and

understand their requirements for a new system or an improvement to an

existing one.

ii. Analysis and Design: They analyze the gathered requirements and design a

system that meets the needs of the stakeholders. This involves creating

system models, such as data flow diagrams or entity-relationship diagrams,

to visualize the system's structure and behavior.

iii. Communication: They act as a liaison between technical teams and

stakeholders, ensuring that the technical solution aligns with the business

requirements.

iv. Implementation Support: They may assist in the implementation of the

system, providing guidance to developers and ensuring that the final product

meets the specified requirements.

v. Testing and Quality Assurance: They participate in testing activities to

verify that the system functions correctly and meets the stakeholders'

expectations.

vi. Documentation: They document the system requirements, design

specifications, and other relevant information to facilitate future maintenance

and support.

© 2025 Mr. Sadiq 9

2.2 Tasks of a System Analyst

To effectively bridge the gap between business needs and technical solutions,

system analysts perform a variety of crucial tasks, including:

a. Understanding Business Needs: System analysts must understand the

business processes and goals of the organization to effectively design

information systems that support those objectives.

b. Requirement Elicitation: They gather requirements from stakeholders

through interviews, surveys, and other techniques to understand what the

system needs to accomplish.

c. System Design: They create detailed specifications for the system, including

its architecture, data structures, and functionality.

d. Collaboration: They collaborate with developers, designers (UI/UX

designers), and other stakeholders to ensure that the system meets the

agreed-upon requirements and specifications.

e. Problem-Solving: They troubleshoot issues that arise during the

development and implementation of the system, finding solutions that meet

both technical and business needs.

2.3 Attributes of a System Analyst

To thrive in this role, system analysts possess a unique blend of attributes that

bridge the gap between business needs and technical solutions. Here's what makes

a great system analyst:

i. Analytical Thinking: System analysts must be able to analyze complex

problems and break them down into manageable components.

© 2025 Mr. Sadiq 10

ii. Communication Skills: Effective communication is essential for gathering

requirements, explaining technical concepts to non-technical stakeholders,

and collaborating with team members.

iii. Attention to Detail: System analysts need to pay close attention to detail to

ensure that system requirements are accurately documented and

implemented.

iv. Problem-Solving Ability: They should be able to identify and solve problems

efficiently, especially when faced with unexpected challenges during system

development.

v. Adaptability: Technology and business requirements can change rapidly, so

system analysts must be able to adapt to new situations and technologies.

2.4 Skills of a System Analyst

Beyond technical knowledge, system analysts need a blend of soft and hard skills

set to excel. The following are some of the skills a system analyst should posses:

i. Technical Skills: System analysts should have a strong understanding of

information technology, including programming languages, databases, and

system architectures.

ii. Business Acumen: They need to understand the business processes and goals

of the organization to design systems that effectively support those

objectives.

iii. Project Management: Knowledge of project management methodologies and

tools helps system analysts coordinate with teams and ensure projects are

completed on time and within budget.

© 2025 Mr. Sadiq 11

iv. Interpersonal Skills: Building rapport with stakeholders and collaborating

effectively with team members are essential skills for system analysts.

v. Documentation Skills: They should be proficient in documenting system

requirements, specifications, and other project-related information in a clear

and organized manner.

3.0 The System Development Life Cycle

The System Development Life Cycle (SDLC) is a framework for software

development that outlines the stages involved in the development of information

systems. The SDLC process provides a structured and standardized approach to

software development, which helps to ensure that software is developed efficiently,

meets user needs, and is of high quality. It is a process followed by software

development teams to design, develop, test, and maintain software products. The

SDLC consists of seven stages, which are:

i. Planning

ii. Analysis

iii. Design

iv. Development

v. Testing

vi. Deployment

vii. Maintenance

© 2025 Mr. Sadiq 12

Figure 3.1 Software Development Life Cycle

3.1 Planning Phase

Planning is the first stage of the Software Development Life Cycle (SDLC) and is

a critical phase that sets the foundation for the entire software development

process. During the planning stage, the project team identifies and defines the

software development project's goals, objectives, requirements, and constraints.

The following are some of the key activities that are typically performed during the

planning phase of the SDLC:

i. Defining the project scope: The project scope refers to the specific tasks,

deliverables, features, and objectives that the software development project

will encompass. It is essential to establish a clear and concise project scope

to ensure that everyone involved in the project has a shared understanding

of the project's goals.

ii. Assessing feasibility: The feasibility assessment involves evaluating the

project's technical, economic, and operational viability. The team examines

© 2025 Mr. Sadiq 13

the technical feasibility of the project, the financial resources required to

complete the project, and the project's impact on the organization's

operations.

iii. Defining project objectives: During the planning phase, the project team sets

the project objectives, which are specific, measurable, achievable, relevant,

and time-bound. Objectives should be SMART to ensure that they are

achievable and contribute to the overall success of the project.

iv. Creating a project plan: The project plan is a document that outlines the

project's timelines, budgets, and resource requirements. The project plan

serves as a roadmap for the project team and helps to ensure that the project

stays on track.

v. Creating a project team: During the planning stage, the project team is

identified and assembled. The team may include developers, designers,

testers, project managers, and other stakeholders who will be involved in the

project.

Overall, the planning stage is a critical step in the SDLC that sets the foundation

for the rest of the software development process. By carefully defining the project

scope, assessing feasibility, establishing project objectives, creating a project plan,

and assembling a project team, the team can increase the chances of success and

ensure that the project is completed on time and within budget.

3.2 Analysis Phase

Analysis is the second stage of the Software Development Life Cycle (SDLC), which

follows the planning stage. During the analysis phase, the project team gathers and

documents the software project's requirements, including functional and non-

© 2025 Mr. Sadiq 14

functional requirements. The analysis phase is crucial because it helps ensure that

the software project meets the stakeholders' needs and requirements. The following

are some of the key activities that are typically performed during the analysis phase

of the SDLC:

i. Identifying stakeholders: The first step in the analysis phase is to identify the

stakeholders who will use the software product. These stakeholders may

include end-users, customers, management, and other stakeholders who have

an interest in the project.

ii. Gathering requirements: Once the stakeholders have been identified, the

project team will work to gather requirements from them. Requirements

may be functional, such as specific features and functionality that the

software should provide, or non-functional, such as performance, security,

and usability requirements.

iii. Analyzing requirements: After the requirements have been gathered, the

project team will analyze them to ensure that they are complete, accurate,

and consistent. This analysis helps to identify any gaps or inconsistencies in

the requirements and ensure that they are aligned with the project objectives.

iv. Creating a requirements document: Once the requirements have been analyzed,

the project team will create a requirements document that outlines the

software's functional and non-functional requirements. The requirements

document serves as a blueprint for the development team, providing a clear

understanding of what needs to be built and tested.

v. Reviewing the requirements document: The requirements document is reviewed

by stakeholders and the development team to ensure that all requirements

© 2025 Mr. Sadiq 15

are complete, accurate, and consistent. Any discrepancies or gaps in the

requirements are addressed before proceeding to the next stage of the SDLC.

In a nutshell, the analysis phase is a critical step in the SDLC, as it helps to ensure

that the software project meets the stakeholders' needs and requirements. By

carefully gathering, analyzing, and documenting requirements, the development

team can create a software product that meets the end-users' needs and provides

value to the organization.

3.3 Design Phase

The Design stage is the third phase of the Software Development Life Cycle

(SDLC) in which the requirements gathered during the previous stages are

analyzed and transformed into a complete system design. In this stage, the

technical details of the project are defined, including the system architecture,

software modules, hardware and network requirements, and user interface. During

the Design stage, the development team, including designers, architects, and

developers, collaborate to create a detailed plan for the software project. This plan

includes the following steps:

i. Defining the System Architecture: This step involves determining the overall

structure of the system, including the hardware and software components,

their inter-relationships, and how they interact with each other.

ii. Creating the Functional Specification: In this step, the software requirements

gathered in the previous stages are analyzed and transformed into a detailed

functional specification. This document describes the software's functionality

and the expected results, which serve as the basis for the software

development process.

© 2025 Mr. Sadiq 16

iii. Designing the User Interface: The design team creates the user interface for the

software, defining the layout, controls, and interaction methods that users

will use to interact with the system.

iv. Defining the Software Modules: In this step, the system's functionality is

broken down into individual modules, and each module is designed to

perform a specific function.

v. Defining Data Structures: The design team defines the data structures used by

the software and how they will be stored and accessed.

vi. Defining the Algorithms: The algorithms used by the software to process data

are defined in this step. This includes the logic used for calculations, decision-

making, and other complex operations.

vii. Creating the Technical Specification: The technical specification defines the

software's technical details, including the programming languages, tools,

and libraries used in development, the development environment, and any

third-party integrations.

The Design stage serves as a blueprint for the software development process,

providing the development team with a clear direction and plan for creating the

software. The result of the Design stage is a comprehensive design document that

serves as a reference for the development team throughout the rest of the SDLC.

3.4 Development Phase

The development stage is the fourth stage of the Software Development Life Cycle

(SDLC), following the planning, analysis, and design stages. The development

stage, also known as the implementation stage, is where the actual coding and

© 2025 Mr. Sadiq 17

programming of the software takes place. During this stage, the software design is

turned into a working product through the creation of source code, testing,

debugging, and integration with other components of the software. This stage

involves collaboration between developers, quality assurance personnel, and other

stakeholders to ensure that the software is developed according to the project

requirements and specifications. The development stage typically consists of the

following sub-stages:

i. Code development: This stage involves the actual creation of the source

code that implements the software design.

ii. Code testing: Once the code is developed, it must be tested to ensure that

it works as expected and meets the project requirements.

iii. Debugging: This stage involves identifying and fixing any issues or bugs

in the code.

iv. Integration: The individual components of the software must be integrated

with each other to create a working product.

3.5 Testing Phase

The testing stage is the fifth stage of the Software Development Life Cycle (SDLC),

following the development stage. During the testing stage, the software is

thoroughly tested to ensure that it meets the specified requirements and is free

from defects before it is released to the end-users. The testing stage is a critical

part of the SDLC because it helps identify and fix any issues with the software

before it is deployed. Testing can help prevent costly errors and ensure that the

software functions correctly, efficiently, and securely. The testing stage can be

divided into several sub-stages, including:

© 2025 Mr. Sadiq 18

i. Unit testing: This is the first level of testing, where individual components or

modules of the software are tested in isolation. Unit testing verifies that each

module works as expected and meets the requirements.

ii. Integration testing: Once the individual modules have been tested, they are

combined and tested as a group to ensure that they work together

seamlessly. Integration testing verifies that the software functions correctly

as a whole and that there are no conflicts or errors between different

modules.

iii. System testing: Once the software has been integrated, it is tested as a

complete system. System testing verifies that the software meets all the

requirements and performs all the intended functions correctly. This can

involve testing different scenarios and configurations to ensure that the

software works under various conditions.

iv. User acceptance testing (UAT): This is the final level of testing, where the

software is tested by the end-users to ensure that it meets their needs and

expectations. UAT verifies that the software is usable, reliable, and performs

all the required functions. UAT also helps identify any final issues or defects

that need to be addressed before the software is released.

Throughout the testing stage, it is important to keep track of progress and report

any issues or defects that are found. Testing can be done manually or using

automated testing tools, depending on the complexity of the software and the

available resources. It also requires careful planning, coordination, and monitoring

to ensure that the software functions correctly, efficiently, and securely.

© 2025 Mr. Sadiq 19

3.6 Implementation Phase

Implementation is the stage of the Software Development Life Cycle (SDLC) that

involves delivering the software product to the end-users after successful testing,

integration, and quality assurance. The main objective of implementation is to

ensure that the software is installed, configured, and operational in the production

environment. Here are the various steps involved in the implementation phase of

the SDLC:

i. Planning: The implementation plan is created, detailing the activities that

need to be performed during the implementation phase. This includes

selecting the implementation environment, defining the roles and

responsibilities, and outlining the timelines.

ii. Installation: The software is installed on the target hardware and operating

system. This involves setting up the software components, configuring the

system parameters, and installing any required third-party software.

iii. Configuration: The software is configured to meet the specific needs of the

end-users. This includes setting up user accounts, configuring access

controls, and configuring system parameters.

iv. Testing: The implemented software is tested to ensure that it is functioning

as expected. This includes both functional and non-functional testing, such

as performance testing, security testing, and usability testing.

v. Training: The end-users are trained on how to use the software. This

includes training on the features and functionalities of the software, as well

as on any new processes or workflows that may be introduced.

© 2025 Mr. Sadiq 20

In a nutshell, a well-planned and executed implementation process can help ensure

that the software is delivered on time, within budget, and meets the needs of the

end-users.

3.7 Maintenance Phase

Maintenance is the final stage of the Software Development Life Cycle (SDLC) and

involves ongoing support and maintenance of the software product after it has been

deployed to the production environment. The main objective of maintenance is to

ensure that the software continues to function correctly and meets the evolving

needs of the end-users. There are four different types of maintenance activities:

i. Corrective Maintenance: This type of maintenance involves fixing any bugs or

errors that are discovered after the software has been deployed. It may also

involve addressing any issues that were not identified during the testing

phase or that arise due to changes in the production environment.

ii. Adaptive Maintenance: This type of maintenance involves modifying the

software to accommodate changes in the user requirements or the external

environment. This may include updating the software to work with new

hardware or software platforms, integrating with new third-party

applications, or modifying the user interface to improve usability.

iii. Perfective Maintenance: This type of maintenance involves improving the

software's functionality or performance to meet the changing needs of the

users. It may involve enhancing existing features, improving the response

time of the software, or optimizing the code to reduce resource utilization.

iv. Preventive Maintenance: This type of maintenance involves proactively

identifying and addressing potential issues before they become problems.

© 2025 Mr. Sadiq 21

This may involve monitoring the software to identify areas where

performance can be improved or updating the software to prevent known

security vulnerabilities.

The maintenance phase is essential to ensure that the software remains relevant

and useful to the end-users. It involves ongoing support and maintenance,

including bug fixes, updates, and upgrades. Maintenance activities are usually

carried out by a dedicated support team, who work closely with the end-users to

identify and resolve issues.

4.0 Methodologies of System Development

The System Development Life Cycle (SDLC) outlines the stages involved in

developing software, from initial planning to deployment and maintenance.

However, while SDLC defines the general steps, there are different methodologies

for implementing these stages based on project requirements and complexity,

budget, team structure and risk management. These methodologies provide

distinct approaches to executing SDLC, each with its own advantages and best use

scenarios. Understanding these methodologies helps in selecting the most suitable

approach for successful software development. Some common system development

methodologies include the following:

4.1 Waterfall Model

The Waterfall Model was the first software development process model introduced

and is also known as the linear sequential life cycle model. It is a structured and

systematic approach to software development, where the entire process is divided

into distinct phases, and each phase must be completed before moving to the next.

© 2025 Mr. Sadiq 22

There is no overlapping between phases, and progress flows in one direction, like

a waterfall.

4.1.1 Phases of the Waterfall Model

The Waterfall Model follows a structured sequence of phases, each depending on

the completion of the previous one:

i. Requirement Analysis – Gathering and defining project requirements in

detail.

ii. System Design – Creating architecture and system specifications based on

requirements.

iii. Implementation (Coding) – Writing and developing the actual software.

iv. Testing – Identifying and fixing errors to ensure the system functions

correctly.

v. Deployment – Releasing the final software for users.

vi. Maintenance – Providing updates and fixing issues after deployment.

© 2025 Mr. Sadiq 23

Figure 4.1 The Waterfall Model

Advantages of the Waterfall Model

i. Simple and easy to understand: Suitable for teams with limited experience.

ii. Clear structure: Well-defined phases make progress easy to track.

iii. Strong documentation: Provides a clear reference for future maintenance

and development.

Disadvantages of the Waterfall Model

i. Lack of flexibility: Difficult to make changes once development has started.

ii. Late issue discovery: Problems may only be found during testing, making

them expensive to fix.

© 2025 Mr. Sadiq 24

iii. Slow process: Every phase must be completed before moving to the next,

which can delay development.

iv. Limited user involvement: Users only see the final product, which may not

fully meet their expectations.

4.2 Iterative Model

The Iterative Model is a software development approach where a system is built

gradually through repeated cycles. Instead of developing the entire system at once,

a basic version is created first, and new features are added in subsequent iterations

until the final system is complete. Each cycle includes requirement analysis, design,

implementation, and testing. This approach allows for continuous improvement

based on feedback.

Figure 4.2 Iterative Model

© 2025 Mr. Sadiq 25

Advantages of the Iterative Model

i. Early system functionality: A working version is available early for testing

and feedback.

ii. Better risk management: High-risk parts are developed first to identify

and solve issues early.

iii. Flexibility in requirements: Changes can be made in later iterations with

minimal impact on cost.

iv. Continuous testing and debugging: Each iteration ensures quality

improvements.

v. Faster problem detection: Design flaws and functional issues are

discovered earlier.

vi. Supports large projects: Well-suited for complex and mission-critical

systems.

Disadvantages of the Iterative Model

i. Resource-intensive: Requires skilled personnel for design, testing, and

risk analysis.

ii. Higher management effort: Close monitoring is needed to track progress

and risks.

iii. Undefined end-point: It may be difficult to predict when the project will be

fully completed.

iv. System design challenges: Since not all requirements are gathered upfront,

architectural issues may arise later.

v. Not ideal for small projects: Breaking down a simple system into multiple

iterations can be inefficient.

© 2025 Mr. Sadiq 26

4.3 Incremental Model

The Incremental Model is a software development approach where the system is

built and delivered in small, manageable parts (increments). Each increment adds

new functionality to the system until the final product is complete. This allows for

gradual implementation, continuous testing, and learning from previous stages to

improve future increments.

Key Features of the Incremental Model

▪ The system is divided into multiple independent modules (increments).

▪ Each increment undergoes requirement analysis, design, implementation,

and testing before integration.

▪ Users can interact with early versions of the system and provide feedback.

▪ Reduces development risks by addressing high-priority features first.

▪ The final system is achieved through progressive enhancement over multiple

releases.

Figure 4.3 Incremental Model

© 2025 Mr. Sadiq 27

Advantages of the Incremental Model

i. Step-by-step progress: Allows controlled development, reducing overall

project risk.

ii. Early feedback: Users can test functional parts early, improving system

alignment with needs.

iii. Easier testing and debugging: Smaller modules are tested independently,

simplifying issue resolution.

iv. Better resource management: Work can be divided among teams

efficiently.

v. Flexibility in requirements: Changes can be incorporated in later

increments with minimal disruption.

Disadvantages of the Incremental Model

i. Postponed problem-solving: Some complex issues may be left for later,

leading to challenges in future increments.

ii. Potential loss of project vision: Focusing too much on individual

increments may lead to inconsistent system integration.

iii. More management effort: Requires careful planning and coordination to

ensure all increments fit together properly.

4.4 Prototyping Model

The Prototyping Model is a software development approach that focuses on

building an initial working version (prototype) of the system before full scale

development. This prototype is used to gather user feedback, refine requirements,

© 2025 Mr. Sadiq 28

and improve the final product. The goal is to reduce misunderstandings between

developers and users by allowing early testing of system functionality.

Key Features of the Prototyping Model

▪ A prototype is developed based on initial requirements.

▪ Users evaluate the prototype and provide feedback.

▪ The system is refined and improved based on user suggestions.

▪ Once the prototype is approved, full development begins.

▪ Testing ensures the final product meets user expectations.

Figure 4.4 Prototyping Model

Advantages of the Prototyping Model

i. Early user involvement: Ensures the system aligns with user needs.

ii. Reduces misunderstandings: Users can visualize and refine requirements.

iii. Flexible design: Changes can be made before final development.

© 2025 Mr. Sadiq 29

iv. Faster problem detection: Issues are identified early, reducing costs.

v. Improved system quality: Ensures better user satisfaction.

Disadvantages of the Prototyping Model

i. Time-consuming: Repeated refinement cycles may delay development.

ii. Higher costs: Creating and modifying multiple prototypes requires

resources.

iii. Unclear project scope: Frequent changes can lead to scope creep.

iv. Not suitable for complex systems: Large-scale projects may require more

structured methodologies.

4.5 Agile Model

The Agile Software Development Life Cycle (SDLC) model combines iterative and

incremental approaches, emphasizing adaptability and customer satisfaction

through the rapid delivery of functional software. Development occurs in small,

incremental builds within short iterations, typically lasting one to three weeks.

Throughout each iteration, cross-functional teams collaborate on planning,

requirement analysis, design, coding, unit testing, and acceptance testing, ensuring

continuous progress. At the end of each iteration, a functional product is

demonstrated to stakeholders for feedback, allowing for necessary adjustments.

Development tasks are organized into time-boxed phases, each focusing on

delivering particular features, while the software undergoes continuous

enhancement through iterative builds. The final version integrates all required

features, ensuring it meets customer expectations efficiently.

© 2025 Mr. Sadiq 30

Figure 4.5 Agile Model

4.5.1 Popular Agile Methodologies

Agile is a broad approach to software development that emphasizes flexibility,

collaboration, and continuous improvement. Within this approach, different

methodologies provide structured ways to implement Agile principles which

includes:

a) Scrum (1995): This is one of the most widely used Agile frameworks. It

organizes work into short, time-boxed development cycles called sprints

© 2025 Mr. Sadiq 31

(typically 1–4 weeks). A Scrum Master ensures the team follows Agile

principles, while daily stand-up meetings keep progress on track. At the end

of each sprint, the team delivers a functional product increment, collects

feedback, and adjusts accordingly.

b) Extreme Programming (XP, 1996): XP enhances Agile by focusing on

high-quality code and customer satisfaction. It relies on continuous testing,

pair programming, and frequent small releases to ensure the software

remains reliable and adaptable to changes.

c) Feature-Driven Development (FDD): This method structures Agile

development around customer-prioritized features. Instead of focusing on

entire projects, FDD breaks work into small, functional features that are

developed, reviewed, and delivered incrementally.

d) Dynamic Systems Development Method (DSDM, 1995): DSDM

provides a more structured Agile approach while maintaining flexibility. It

ensures rapid application development (RAD) by enforcing strict time

constraints and prioritizing business needs. It integrates continuous

stakeholder involvement to refine the project as it progresses.

Advantages of Agile Model

i. Rapid Functionality Development: Allows quick development and

demonstration of working features.

ii. Team Collaboration: Encourages teamwork, cross training, and shared

knowledge.

iii. Minimal Resource Requirements: Can be implemented with relatively low

resource needs.

© 2025 Mr. Sadiq 32

iv. Adaptability to Change: Suitable for projects with fixed or changing

requirements.

v. Early Delivery of Working Solutions: Ensures customers see usable

features early in development.

vi. Ideal for Dynamic Environments: Works well in industries where

requirements frequently evolve.

vii. Lightweight Documentation: Uses minimal documentation while

maintaining flexibility.

viii. Simplified Management: Follows an easy-to-manage approach with

minimal bureaucracy.

ix. Developer Flexibility: Allows developers to adapt quickly and make

necessary modifications.

Disadvantages of Agile Model

i. Challenges in Maintenance & Scalability: Long-term sustainability,

maintainability, and extensibility can be difficult.

ii. Requires Strong Leadership & Planning: Needs an Agile leader and

structured Agile Project Management (PM) to function effectively.

iii. Strict Delivery Management: Scope and features must be carefully

managed to meet deadlines.

iv. Heavy Customer Involvement: Success depends on continuous customer

feedback. Unclear requirements can misdirect development.

© 2025 Mr. Sadiq 33

v. High Individual Dependency: Minimal documentation makes knowledge

transfer difficult, increasing reliance on specific team members.

4.6 Rapid Application Development (RAD) Model

Rapid Application Development (RAD) is a software development methodology

that prioritizes speed and flexibility over extensive planning. It focuses on rapid

prototyping, where functional components are developed iteratively, allowing for

quick modifications and faster product delivery. In the RAD model, development

occurs in parallel, with small cross-functional teams comprising developers,

domain experts, and customer representatives working on independent prototypes

that are later integrated. Since there is minimal preplanning, RAD allows for easy

incorporation of changes throughout the development process.

4.6.1 Phases of the RAD Model

a) Business Modeling: This phase identifies the flow of information within the

system by analyzing how data is obtained, processed, and distributed across

various business units. It also defines key factors that drive efficient business

processes.

b) Data Modeling: The collected business information is organized into

structured data sets, where attributes and relationships between data objects

are clearly defined. Additionally, data integrity rules are established to

ensure alignment with business requirements.

c) Process Modeling: In this phase, structured data is converted into business

workflows by defining operations such as data creation, modification,

© 2025 Mr. Sadiq 34

retrieval, and deletion. It also specifies any necessary process enhancements

to meet business objectives effectively.

d) Application Generation: Automated tools and code generators are used to

transform process models into functional prototypes. This phase ensures

rapid development and seamless integration of various software components.

e) Testing and Turnover: Prototypes are independently verified in each

iteration, reducing overall testing time. Comprehensive testing of data flow

and component interfaces is conducted to ensure the seamless integration of

all modules into a fully functional product.

Figure 4.6 RAD Model

© 2025 Mr. Sadiq 35

Advantages of the RAD Model

The RAD (Rapid Application Development) model offers several advantages,

particularly in environments where quick development and adaptability are

essential.

i. Accommodates Changing Requirements: RAD allows modifications and

refinements at any stage without significantly disrupting the development

process.

ii. Measurable Progress: Continuous iterations and prototype evaluations

provide clear insights into development progress.

iii. Short Iteration Time: The use of powerful RAD tools enables rapid

iterations, reducing overall development time.

iv. High Productivity: Requires fewer developers while maintaining a fast-

paced development cycle.

v. Reduced Development Time: Accelerates software delivery by focusing on

reusable components and automation.

vi. Component Reusability: Promotes the reuse of software modules,

improving efficiency and consistency.

vii. Quick Initial Reviews: Early-stage evaluations help identify and resolve

potential issues before full-scale development.

viii. Encourages Customer Feedback: Frequent interactions with stakeholders

ensure that the product aligns with user expectations.

© 2025 Mr. Sadiq 36

ix. Early Integration: Integration from the beginning minimizes compatibility

issues and improves system stability.

Disadvantages of the RAD Model

i. Requires Skilled Team Members: Success depends on developers with

strong technical and analytical expertise.

ii. Limited to Modular Systems: The RAD model is only effective for projects

that can be broken down into independent modules.

iii. High Dependency on Expertise: Skilled designers and developers are

essential to ensure successful implementation.

iv. Relies on Strong Modeling Skills: Development heavily depends on

accurate system modeling and design.

v. High Cost of Modeling and Automation: Not suitable for low-budget

projects due to expensive modeling and automated code generation tools.

vi. Increased Management Complexity: Continuous iterations and customer

involvement add to project management challenges.

vii. Best for Component-Based and Scalable Systems: Not ideal for

monolithic systems with tightly integrated components.

viii. Requires Active User Involvement: Success depends on continuous

customer participation throughout the development cycle.

ix. Optimized for Shorter Development Timelines: Works best for projects

with tight deadlines that require rapid deployment.

© 2025 Mr. Sadiq 37

4.7 V-Model

The V-Model, also known as the Validation and Verification Model, is a structured

approach in the Software Development Life Cycle (SDLC) where each development

stage is directly linked to a corresponding testing phase. It follows a V-shaped

sequence, ensuring early defect detection and maintaining high software quality.

This model is derived from the Waterfall Model and emphasizes a disciplined,

sequential process where each phase must be completed before proceeding to the

next.

4.7.1 Structure of the V-Model

The V-Model consists of two parallel tracks: the left side represents Verification

Phases, where planning and designing take place, while the right side covers

Validation Phases, focusing on testing and evaluation. The coding phase sits at the

base of the "V," bridging both sides by converting the design into a working

system.

Figure 4.7 V-Model Structure

© 2025 Mr. Sadiq 38

4.7.2 Verification Phases

a) Business Requirement Analysis: This initial phase involves gathering

requirements from the client’s perspective, ensuring a clear understanding

of business needs. Since customers may not always articulate their

requirements precisely, thorough discussions are conducted. Additionally,

this phase includes acceptance test planning to validate the final product

against business expectations.

b) System Design: After defining business requirements, the system’s overall

structure is planned, covering hardware, software, and communication

aspects. Early system test planning is also initiated at this stage, providing

ample time for thorough validation.

c) Architectural Design (High-Level Design - HLD): This phase defines the

system architecture, breaking it down into functional modules and specifying

the communication flow. Multiple technical approaches may be evaluated,

with the final choice determined based on feasibility and cost-effectiveness.

Integration test plans are also formulated to ensure seamless interaction

between components.

d) Module Design (Low-Level Design - LLD): The internal details of each

module are designed in this phase, ensuring that all components align with

the overall system architecture. Unit test planning is conducted to facilitate

early identification of defects within individual modules.

© 2025 Mr. Sadiq 39

4.7.3 Coding Phase

The coding phase involves translating design specifications into executable system

modules using appropriate programming languages. Development follows coding

standards and best practices, with rigorous code reviews and performance

optimizations before final integration.

4.7.4 Validation Phases

1. Unit Testing: The unit tests planned during module design are executed in

this phase. These tests validate individual components, helping to identify

and fix defects early in the development cycle.

2. Integration Testing: This phase ensures smooth interaction and data

exchange between integrated modules, verifying that components function

together correctly.

3. System Testing: Conducted after integration testing, this stage evaluates

the entire system’s functionality, ensuring that both software and hardware

components operate as expected.

4. Acceptance Testing: The final testing phase assesses the software in a real-

world environment, validating whether it meets business requirements. This

phase also identifies potential performance and compatibility issues before

deployment.

Advantages of the V-Model

i. Structured and Disciplined Approach: Each phase follows a sequential

order, ensuring clarity and well-defined deliverables.

© 2025 Mr. Sadiq 40

ii. Best for Well-Defined Requirements: Works effectively for small projects

where the requirements are stable and clearly understood.

iii. Easy to Manage: Due to its rigid structure, progress is easily tracked, and

each phase has specific review processes.

iv. Straightforward Implementation: Simple to understand and apply, making

it accessible even for teams with minimal Agile experience.

Disadvantages of the V-Model

i. Limited Flexibility: Once the project moves into later stages, making

changes to earlier phases is costly and time-consuming.

ii. High Risk in Dynamic Environments: Not suitable for projects with

evolving requirements, as modifications can be expensive.

iii. Not Ideal for Complex Systems: Struggles with object-oriented or large-

scale, ongoing projects due to its linear approach.

iv. Late Software Availability: No functional software is produced until the

later stages, making early user feedback difficult.

4.8 Spiral Model

The Spiral Model is a software development approach that blends elements of the

Iterative Development Model with the Waterfall Model, emphasizing risk

management at every stage. This method enables incremental development, where

each iteration refines and enhances the product before moving forward.

© 2025 Mr. Sadiq 41

4.8.1 Phases of the Spiral Model

The Spiral Model is structured around four key phases, which are repeated in cycles

known as spirals throughout the software lifecycle.

a) Requirement Identification: The process begins with defining business

requirements in the initial spiral. As development progresses, system, sub-

system, and module-level requirements are determined in subsequent spirals.

Continuous interaction between the customer and system analyst helps

refine these requirements, ensuring alignment with user needs. At the end of

the spiral, the product is prepared for release in the target market.

b) System Design: The design phase starts with conceptual planning in the

first spiral. As iterations continue, more detailed architectural, logical,

physical, and final design refinements are made. This evolving approach

ensures that design modifications are integrated effectively based on

feedback and system requirements.

c) Development (Build Phase): In this stage, the actual software product is

created. The initial spiral typically produces a Proof of Concept (POC) to

gather early customer input. As requirements and design details become

clearer, working versions of the software, known as builds, are developed and

assigned version numbers. These builds are shared with customers for

review and validation.

d) Evaluation and Risk Management: This phase focuses on identifying and

assessing technical and project-related risks, such as potential delays or

budget constraints. After testing, the customer reviews the software and

© 2025 Mr. Sadiq 42

provides feedback. Any identified issues are addressed in the next iteration

to improve the product.

4.8.2 Iterative Development in the Spiral Model

Each cycle incorporates customer feedback, allowing for continuous enhancements

while following a structured, phase-by-phase approach. This repetitive cycle of

evaluation and improvement ensures that risks are mitigated early, and the

software evolves efficiently to meet project requirements.

Figure 4.8 Spiral Model

© 2025 Mr. Sadiq 43

Advantages of the Spiral Model

i. Accommodates changing requirements: The model is highly adaptable,

making it suitable for projects with evolving needs.

ii. Extensive use of prototypes: Prototyping allows stakeholders to visualize

and interact with the system at different stages.

iii. Accurate requirement capture: Continuous feedback ensures that user

requirements are well understood and implemented correctly.

iv. Early user involvement: Users can interact with the system in the early

stages, leading to better usability insights and improvements.

v. Better risk management: High-risk components can be developed and

tested earlier, reducing the chances of project failure.

Disadvantages of the Spiral Model

i. Complex management: The iterative nature of the model makes project

tracking and coordination more challenging.

ii. Uncertain project timeline: The end date may not be clearly defined due to

continuous iterations and refinements.

iii. Not suitable for small projects: The model is expensive and inefficient for

low-risk or small-scale developments.

iv. Process complexity: The development structure is intricate, requiring

careful planning and execution.

v. Possibility of infinite loops: Without clear objectives and scope, the spiral

process can continue indefinitely.

© 2025 Mr. Sadiq 44

vi. Excessive documentation: Each phase requires extensive documentation,

increasing the overall project workload.

4.9 Big Bang Model

The Big Bang Model is a software development approach that does not adhere to

a structured process or predefined methodology. Development begins by utilizing

the available resources such as time, money, and effort without extensive planning

or requirement analysis. The final product is the developed software, which may or

may not fully meet customer expectations.

This model is highly adaptable, allowing requirements to be incorporated as they

emerge rather than being strictly defined from the start. It is particularly useful in

projects where clients are unsure about their needs, making it well-suited for

exploratory or experimental development.

4.9.1 Structure and Practical Use of the Big Bang Model

In this approach, most resources are directed toward software development and

coding, with minimal emphasis on structured phases or pre-defined planning. Since

requirements are often unclear at the outset, they are dynamically implemented

throughout the project. As a result, there is a high likelihood of revisions or even

complete redevelopment if major changes arise during development.

The Big Bang Model is best suited for small-scale projects, especially those handled

by individual developers or small teams. It is commonly used in academic

environments, experimental software projects, and development scenarios where

rigid requirements and strict deadlines are not a priority. This model is ideal when

© 2025 Mr. Sadiq 45

project goals are uncertain, allowing developers the freedom to experiment, iterate,

and refine the software as needed.

Figure 4.9 The Big Bang Model

Advantages of the Big Bang Model

1. Simplicity: This model is straightforward and easy to implement.

2. Minimal Planning: Requires little to no initial planning before development

begins.

3. Ease of Management: Since it lacks structured phases, it is simple to

oversee.

4. Low Resource Requirement: Can be executed with minimal resources,

making it cost-effective for small projects.

5. Flexibility for Developers: Developers have the freedom to make changes

and experiment without rigid constraints.

6. Ideal for Learning: Serves as a good learning tool for beginners or students

practicing software development.

© 2025 Mr. Sadiq 46

Disadvantages of the Big Bang Model

1. High Risk and Uncertainty: The lack of planning increases the chances of

project failure.

2. Not Suitable for Complex Systems: Ineffective for large-scale, object-

oriented, or structured projects.

3. Unsuitable for Long-Term Projects: Poor choice for projects that require

ongoing development and maintenance.

4. Potentially Expensive: Misunderstood or evolving requirements can lead

to excessive costs due to rework and inefficiencies.

5.0 Requirement Determination

Requirement determination is a crucial step in system development, as it defines

what a system must do to meet user and business needs. Without proper

requirements gathering, a system may fail to function as expected, leading to

inefficiencies, financial losses, or even total system failure. This process involves

engaging with stakeholders to gather, analyze, and refine their expectations. The

goal is to understand their needs, identify existing challenges, and propose

solutions that align with the objectives of the organization.

For example, if a university wants to develop a Student Information System, the

system analyst must determine how students will register for courses, how

lecturers will upload results, and how administrators will generate reports.

Similarly, if a bank plans to introduce an Online Loan Application System, it must

define how customers will apply for loans, how eligibility will be checked, and how

approvals will be processed.

© 2025 Mr. Sadiq 47

5.1 Types of Requirements

Requirements are broadly classified into two categories: functional requirements

and non-functional requirements.

5.1.1 Functional Requirements

Functional requirements define the essential features, operations, and tasks that a

system must perform to meet user needs. These requirements specify what the

system should do and how it should respond to different inputs, ensuring it

functions as intended. They outline the core functionalities that enable users to

interact with the system effectively, making it an integral part of software and

system development. Whether it's processing transactions, managing records, or

facilitating communication, functional requirements set clear expectations for

system behavior and performance. For instance, in a university system, a Course

Registration System should allow students to register for courses, pay fees, and

receive confirmation via email or SMS, while a Student Result Management System

should enable lecturers to upload grades, compute GPAs, and generate transcripts.

In banking, an Automated Teller Machine (ATM) must allow customers to check

balances, withdraw cash, and print receipts, whereas a Mobile Banking App should

support money transfers, bill payments, and account statement generation. Clearly

defining these requirements ensures the system delivers expected functionalities,

improving user experience and operational efficiency.

5.1.2 Non-Functional Requirements

Non-functional requirements define the quality attributes of a system, focusing on

how well it performs rather than what it does. These requirements encompass

aspects like speed, security, scalability, reliability, and usability, all of which

© 2025 Mr. Sadiq 48

contribute to the system’s overall efficiency and user experience. Unlike functional

requirements that specify tasks the system must perform, non-functional

requirements ensure that these tasks are executed smoothly, securely, and reliably.

For example, in a university system, performance requirements dictate that a

student registration system should process course enrollments in under 10 seconds,

even during peak periods, while security measures ensure that only authorized

lecturers can modify students grades. In banking, scalability is critical for a mobile

banking app to support at least 100,000 concurrent users without crashing, and

ATMs must maintain high availability, operating 24/7 except during maintenance.

These non-functional aspects are crucial for optimizing system performance,

ensuring security, and delivering a seamless user experience.

5.2 Importance of Requirement Determination

Proper requirement determination helps in:

i. Ensuring the system meets user expectations: Clearly defining

requirements ensures that students, bank customers, government agencies,

and hospital staff get a system that works for them.

ii. Reducing development costs: Identifying requirements early prevents

costly redesigns or total system failure.

iii. Improving system usability: A well-defined system is easier to use,

reducing the need for excessive training.

iv. Enhancing efficiency: By automating processes, banks can process loans

faster, universities can manage student records better, and hospitals can

improve patient care.

© 2025 Mr. Sadiq 49

v. Supporting decision-making: With well-organized data, university

administrators, bank managers, and government agencies can make better

decisions.

5.3 Techniques for Gathering Requirements

To develop a successful system, system analysts must gather accurate and complete

requirements from users and stakeholders. Various techniques can be used to

ensure that all necessary information is collected efficiently. The choice of

technique depends on factors such as the nature of the project, the availability of

users, and the complexity of the system being developed. Below are the most

commonly used techniques for gathering requirements:

5.3.1 Interviews

Interviews are one of the most effective methods for gathering requirements

because they allow system analysts to engage directly with users and stakeholders.

This technique involves asking structured or unstructured questions to understand

their needs, expectations, and concerns about the system.

5.3.1.1 Types of Interviews:

a. Structured Interviews: The analyst prepares a fixed set of questions that all

interviewees must answer. This ensures consistency and makes it easier to

compare responses.

b. Unstructured Interviews: The analyst has a general idea of what to ask but

allows the conversation to flow naturally, encouraging users to provide more

detailed feedback.

© 2025 Mr. Sadiq 50

c. Semi-Structured Interviews: A mix of structured and unstructured

questions, allowing flexibility while maintaining focus on key topics.

Advantages of Interviews

i. Provides in-depth information about user needs.

ii. Allows direct clarification of misunderstandings.

iii. Helps build good relationships with stakeholders.

Disadvantages of Interviews

i. Time consuming, especially in large organizations.

ii. Requires skilled interviewers who can ask the right questions.

iii. Some users may not fully express their needs due to fear or uncertainty.

5.3.2 Questionnaires

A questionnaire is a structured set of written questions distributed to multiple users

to collect information about their needs and expectations. This method is

particularly useful when dealing with a large number of users or when responses

need to be quantified.

5.3.2.1Types of Questions:

a. Closed-Ended Questions: Provide predefined answer choices (e.g., Yes/No,

multiple-choice). Useful for gathering measurable data.

b. Open-Ended Questions: Allow users to provide detailed responses in their

own words, giving deeper insights into their needs.

© 2025 Mr. Sadiq 51

Advantages of Questionnaires

i. Can reach a large number of users quickly.

ii. Responses can be easily analyzed and compared.

iii. Users can complete them at their convenience.

Disadvantages of Questionnaires:

i. Users may ignore or misinterpret questions.

ii. Responses may lack depth compared to interviews.

iii. Difficult to follow up on unclear answers.

5.3.3 Observation

Observation involves watching how users interact with an existing system or carry

out their daily tasks. This technique helps analysts understand real-life challenges

and identify requirements that users might not mention in interviews or

questionnaires.

5.3.3.1 Types of Observation:

a. Passive Observation: The analyst silently watches the user without

interfering.

b. Active Observation: The analyst interacts with the user, asking questions

while observing.

© 2025 Mr. Sadiq 52

Advantages of Observation

i. Helps identify actual challenges users face, rather than relying on what they

say.

ii. Uncovers inefficiencies and workarounds users may have developed.

iii. Provides real-time feedback on system performance.

Disadvantages of Observation

i. Users may alter their behavior when they know they are being observed.

ii. Some tasks are complex and require additional clarification from users.

iii. Time consuming, especially for large scale systems.

5.3.4 Document Analysis

Document analysis involves reviewing existing records, reports, policy documents,

system manuals, or historical data related to the system being developed. This

technique helps analysts understand how current processes work and what

improvements are needed.

Advantages of Document Analysis:

i. Provides a historical perspective on how the system has evolved.

ii. Helps identify gaps in existing processes.

iii. Useful for regulatory and compliance related requirements.

Disadvantages of Document Analysis:

i. Documents may be outdated or incomplete.

© 2025 Mr. Sadiq 53

ii. May require additional clarification from users.

iii. Can be time consuming if there is a large volume of documents.

5.3.5 Joint Application Development (JAD)

JAD is a collaborative approach where system analysts, developers, and key

stakeholders come together in structured workshops to discuss and define system

requirements. These sessions help ensure that everyone’s input is considered before

development begins.

Steps in a JAD Session

a. Preparation: Identify key participants and define objectives.

b. Workshop Sessions: Stakeholders discuss system requirements, processes,

and potential improvements.

c. Documentation: The analyst records agreed upon requirements for

approval.

d. Review & Refinement: Participants verify the documented requirements

and suggest modifications if needed.

Advantages of JAD:

i. Encourages direct collaboration between users and developers.

ii. Reduces misunderstandings and speeds up decision making.

iii. Ensures that all stakeholders’ views are represented.

© 2025 Mr. Sadiq 54

Disadvantages of JAD:

i. Requires commitment from all participants.

ii. Scheduling can be difficult, especially in large organizations.

iii. Sessions may become unproductive if not properly managed.

	1.0 Introduction
	1.1 Information System
	1.2 System Analysis and Design?
	1.3 The Importance of Conducting System Analysis and Design

	2.0 System Analyst
	2.1 Role of a System Analyst
	2.2 Tasks of a System Analyst
	2.3 Attributes of a System Analyst
	2.4 Skills of a System Analyst

	3.0 The System Development Life Cycle
	3.1 Planning Phase
	3.2 Analysis Phase
	3.3 Design Phase
	3.4 Development Phase
	3.5 Testing Phase
	3.6 Implementation Phase
	3.7 Maintenance Phase

	4.0 Methodologies of System Development
	4.1 Waterfall Model
	4.1.1 Phases of the Waterfall Model
	Advantages of the Waterfall Model
	Disadvantages of the Waterfall Model

	4.2 Iterative Model
	Advantages of the Iterative Model
	Disadvantages of the Iterative Model

	4.3 Incremental Model
	Key Features of the Incremental Model
	Advantages of the Incremental Model
	Disadvantages of the Incremental Model

	4.4 Prototyping Model
	Key Features of the Prototyping Model
	Advantages of the Prototyping Model
	Disadvantages of the Prototyping Model

	4.5 Agile Model
	4.5.1 Popular Agile Methodologies
	Advantages of Agile Model
	Disadvantages of Agile Model

	4.6 Rapid Application Development (RAD) Model
	4.6.1 Phases of the RAD Model
	Advantages of the RAD Model
	Disadvantages of the RAD Model

	4.7 V-Model
	4.7.1 Structure of the V-Model
	4.7.2 Verification Phases
	4.7.3 Coding Phase
	4.7.4 Validation Phases
	Advantages of the V-Model
	Disadvantages of the V-Model

	4.8 Spiral Model
	4.8.1 Phases of the Spiral Model
	4.8.2 Iterative Development in the Spiral Model
	Advantages of the Spiral Model
	Disadvantages of the Spiral Model

	4.9 Big Bang Model
	4.9.1 Structure and Practical Use of the Big Bang Model
	Advantages of the Big Bang Model
	Disadvantages of the Big Bang Model

	5.0 Requirement Determination
	5.1 Types of Requirements
	5.1.1 Functional Requirements
	5.1.2 Non-Functional Requirements

	5.2 Importance of Requirement Determination
	5.3 Techniques for Gathering Requirements
	5.3.1 Interviews
	5.3.1.1 Types of Interviews:

	Advantages of Interviews
	Disadvantages of Interviews
	5.3.2 Questionnaires
	5.3.2.1Types of Questions:

	Advantages of Questionnaires
	5.3.3 Observation
	5.3.3.1 Types of Observation:

	Advantages of Observation
	Disadvantages of Observation
	5.3.4 Document Analysis
	Advantages of Document Analysis:
	Disadvantages of Document Analysis:
	5.3.5 Joint Application Development (JAD)
	Steps in a JAD Session
	Advantages of JAD:
	Disadvantages of JAD:

